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Abstract
An elementary process occurring on surfaces is diffusion. The dynamics
is simplest when the concentration of adsorbates is sufficiently small that
interaction between adsorbates can be ignored. But even for this tracer
diffusion process, much remains to be uncovered. Here, we present the
interplay between experimental measurement of tracer diffusion and its
theoretical interpretation, which leads to good estimates of the interaction
of the adparticle with the surface. We show how the results from three
different experimental techniques—field ion microscopy, scanning tunnelling
microscopy and quasielastic helium atom scattering—can be interpreted. Using
the generalized Langevin equation as a model for the diffusion dynamics, we
show how the turnover theory for activated diffusion may be used to describe
the measured time evolution of the adparticle distribution on the surface. The
different activation energy measured for hopping over single or double lattice
lengths is shown to come from the added energy loss to the surface, as the
particle moves over the longer path. We discuss some of the issues which are
not yet clear; these include quantum effects, such as the quantum suppression
of diffusion, vibrationally assisted diffusion, multidimensional effects and
diffusion in the presence of external fields.

1. Introduction

The diffusion of adsorbates on surfaces is perhaps the most elementary dynamical process
occurring on surfaces. It is a preliminary step to more complex surface phenomena such as
crystal growth, associative desorption, heterogeneous catalysis and chemical reactions. The
experimental development of methods which allow for an intimate probing of diffusion has also
led to new results in the theory for the diffusion (tracer and collective or chemical) coefficients
and friction constants. The detailed characterization of diffusion mechanisms and adsorbate–
substrate, adsorbate–adsorbate interactions, has stimulated considerable progress in theoretical
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methods. Different experimental and theoretical techniques and methods have been reviewed
during the past 15 years by Gomer [1], Lombardo and Bell [2], Hofmann and Toennies [3],
Barth [4] and Ala-Nissila, Ferrando and Ying [5].

In most cases, one is considering an adatom or admolecule, which is trapped on a site
on the surface. The adparticle can escape from the site only if it overcomes a barrier (whose
height is denoted as V ‡) which separates it from the adjacent site. The energy needed for this
activation is supplied by the thermal energy of the surface, hence the terminology ‘activated
surface diffusion’. Elementary theory then implies that the diffusion coefficient obeys an
Arrhenius law, and so it may be written down as

D(T ) = D0(T ) exp

(
− V ‡

kBT

)
. (1.1)

Much theoretical work is geared towards understanding the structure of the surface and the
adparticle sitting on it. Ab initio theoretical chemistry and semiempirical methods are used
to determine the adiabatic potential felt by the particle [5]. The dynamics however is in the
prefactor D0(T ), which is the central object of this review. The theory presented sheds light
on the mean free path of the particle, the probability for jumps over multiple sites, quantum
effects such as tunnelling and above barrier reflection, the frictional forces exerted by the
surface on the adparticle, intramolecular vibrational effects and more. We restrict this review
to low surface coverage; that is, interactions between adparticles are neglected.

Diffusion times and thus diffusion coefficients may vary by orders of magnitude,
depending on the temperature of the surface. Present day experimental methodology enables
the accurate determination of diffusion coefficients which span more than ten orders of
magnitude. However, different experimental methods are used for different diffusion times.
Scanning tunnelling microscopy (STM) and field ion microscopy (FIM) are especially useful
for slow diffusion, such that the time between jumps of the adatom is of the order of seconds.
These measurements provide a direct observation of the diffusion process. Quasielastic helium
atom scattering (QHAS) has been used to determine diffusion processes in which the time
between jumps is of the order of microseconds. In section 2 we give a very brief review of
these experimental methods. As contrasted with STM and FIM, QHAS provides information
on the diffusion dynamics only indirectly. We therefore also provide in section 3 a review
of the theory underlying the QHAS method and discuss some of the difficulties involved in
interpreting the results. Special attention is given to the intertwining of vibrational adparticle
motion with diffusion.

A very useful model for the diffusion dynamics is the Langevin equation or its
generalization to include memory effects in the form of time dependent friction [6]. In
a typical theoretical analysis, one obtains information over the potential of mean force
governing the motion of the adparticle from a combination of ab initio chemistry computations
and experimental data. The interaction of the adparticle with the surface is then typically
represented in terms of a frictional force and a random force related to each other by
the fluctuation–dissipation relation. One then carries out numerical molecular dynamics
simulations, which are sufficient for determining the classical mechanics of the diffusion
process. Classical mechanics is usually sufficient except for very light particles such as
hydrogen. One of the successes of recent theory is in providing simple analytic expressions
for the prefactor and the time dependent hopping distribution of the adparticles. These may
then be used to directly interpret the experimental results, shedding light on the interaction
of the adparticle with the surface. In section 4 we review the Langevin theory of diffusion,
paying special attention to the analytical results.
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Then in section 5 we discuss some of the remaining outstanding challenges facing theory.
These include the theory of multidimensional diffusion, vibrational mediation of diffusion,
quantum mechanical aspects and more.

2. Experimental methods

As mentioned in the introduction, we will be dealing exclusively with tracer diffusion, that is
diffusion of a single adparticle that interacts with the surrounding surface, but is not influenced
by other adparticles on the surface. An excellent review of the experimental methods available
until the year 1990 may be found in the review by Gomer [1]. A more recent but also more
concise review is given in [4]. Here we concentrate on three experimental methods, the field ion
microscopy method, which was a forerunner of the scanning tunnelling microscopy method,
and the quasielastic helium atom scattering method. Results from these three methods have
been analysed and interpreted in terms of Langevin equations and so they are the mainstay of
this review.

2.1. Field ion microscopy measurements

Field ion microscopy (FIM) [7] provided the first direct measurement of adatom diffusion.
The method, which evolved from the field emission microscopy (FEM) technique [1], was the
first to give a direct observation of the diffusion dynamics. A metal tip serves as the substrate
for the adsorbed atoms. At a sufficiently low temperature, the adatom diffusion is so slow that
it can be ignored. An inert imaging gas is ionized with a strong electric field and the emitted
ions are detected on a screen. The ionization depends sensitively on the local surroundings and
thus one can observe directly the location of adatoms on the surface. Since one is measuring
the heavy ions, the method has a resolution of 1–2 Å and so provides a detailed picture of the
location of adatoms on the surface.

After the first measurement the tip is rapidly heated, and kept at the ‘hot’ temperature for
a fixed amount of time which is much longer than the time it took to heat the tip. Then the tip
is rapidly cooled and the FIM measurement repeated. Any jump of adsorbed atoms will now
reflect itself directly in the new field emission spectrum. Implicitly, one is assuming that no
diffusion occurs during the heating and cooling periods. The heating and cooling must thus
be short as compared to the time at which the system is kept at ‘high temperature’. In order to
obtain information on individual hops of the adparticles, the ‘high temperature’ period must
be short enough so that a given adparticle will not jump more than a ‘few’ jumps during this
period. For if it jumps many times, then the hopping distribution will be Gaussian with a width
which gives the global diffusion coefficient, but does not provide information on individual
hopping rates.

To be more precise, one assumes that the adparticle distribution on the surface is governed
by a master equation [8]. To simplify, we assume that the adparticle can jump independently
along two perpendicular lattice directions but with different hopping rates, denoted as �1

j and
�2

j , j = 0,±1, . . .. The location of the particle on the lattice is denoted by two indices
l,m. At the initial time (t = 0) the particle is by definition at the site l = m = 0, that is
wl,m(t = 0) = δl,0 · δm,0. The probability distribution wl,m(t) for the particle to be at the l,m
site at time t is then governed by the master equations:

d

dt
wl,m(t) =

∞∑
j=−∞

�1
jwl− j,m +

∞∑
j=−∞

�2
jwl,m− j . (2.1)
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By definition, the rates �1
0 and �2

0 are negative, allowing for escape from the l,m site, the rates
�

1,2
j are the rates of jumping directly over j sites.

The master equation is solved by Fourier transforms using the translational invariance of
the surface. Denoting ŵ(k, t) = ∑

l,m wl,m(t)ei(k1l+k2 m) and �̂1,2(k) = ∑
l �

1,2
l eikl one readily

finds the explicit result:

ŵ(k, t) = e−(�̂1(k1)+�̂2(k2))t . (2.2)

This then implies that wl,m(t) = w1
l (t)w

2
m(t), with

w
1,2
l (t) = 1

2π

∫ 2π

0
dk e−�̂1,2(k)t e−ikl . (2.3)

Since the distribution w1,2
l (t) is measured directly in the experiment, it can then be fitted by

adjusting the hopping rate parameters�1,2
j as if they were independent fitting parameters [9, 10].

Typically, one finds that at most j = 2, 3 suffices for fitting the experimentally measured time
dependent distribution. It should be stressed that it is the deviation of the time dependent
distributionw1,2

l (t) from a Gaussian which allows accurate inversion to the individual hopping
rates.

This then means that both FIM and STM (see below) are limited to slow diffusion, such
that the mean time between jumps of the adparticle is of the order of 10−2 s and longer. For
faster diffusion, one must resort to more indirect methods, of which the QHAS is an important
one to be discussed below.

2.2. The STM method

The central difference between STM and FIM is in the means of observing the adparticle.
In FIM, this is effected through the ionization of the inert gas. In STM, it comes from the
change in the tunnelling current of the STM tip. Thus one scans a portion of the surface,
covering typically an area of a few hundred Å2 at the low temperature, then the surface is
rapidly heated, allowing for diffusion to occur, and then cooled down again for the next STM
measurement [11]. As in FIM, this limits the experiment to diffusion times which are of the
order of seconds.

The spectacular achievement of STM has culminated in video recordings of atomic
diffusion, which are available in the form of movies3. These show in detail the ‘drunken
walker’ mechanism of diffusion, in which an adparticle jumps back and forth along a trough
of a well characterized surface. These measurements have also shown that adatoms can, in a
single jump, hop over lengths which are a few multiples of the lattice length of the surface.

Perhaps the most worrisome aspect of the STM method is that the strong field emanating
from the tip can in principle change the local electronic surroundings of the adparticle and
thus affect the natural diffusion process [12–14]. Various experiments have been carried out
to determine the extent of the influence of the tip [15]. The central finding is that the field
does not affect the activation energy ‘too much’. However, a change of a few per cent in
an activation barrier can lead to significant uncertainty in the prefactor D0(T ) where all the
dynamics is hidden, so that the effect of the STM field on the hopping characteristics has not
yet been resolved.

Finally, we do note that in both FIM and STM one may alter the surface temperature at
which the diffusion occurs to obtain directly an Arrhenius plot for the individual hopping rates.
One of the interesting results is that the activation energy for double hops is somewhat higher

3 These can be found at the website of the Department of Physics and Astronomy of the University of Aarhus—
http://www.phys.au.dk/camp/hot0017.shtm

http://www.phys.au.dk/camp/hot0017.shtm
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than the activation energy for single hops [11]. We shall see below that this observation has
been interpreted successfully in terms of the Langevin equation modelling of the diffusion.

2.3. The QHAS method

The QHAS method [3] can be considered as the surface science analogue of quasielastic neutron
scattering, which has been widely and successfully applied to analyse diffusion in the bulk.
The experimental layout incorporates a supersonic He atomic beam source, a very low pressure
target chamber and a time-of-flight arm at a fixed angle of usually 95.8◦ to the incident beam
direction. The resulting time-of-flight spectra are converted to an energy transfer scale and the
parallel wavevector transfer is varied by changing the incident angle of the beam with respect
to the surface normal. The coverage of adparticles is monitored via the He atom specular
reflectivity, assuming a constant sticking coefficient. Van Hove [16] was the first to discuss the
velocity requirement of probe particles needed to extract information about unaffected diffusion
coefficients, spatial and time pair correlation functions, jump distributions, etc. The scattering
particles should stay on the surface a time which is at least of the order of the relaxation time of
the relevant correlation functions. In particular, He atoms emanating from a room temperature
source fulfil this requirement, since their velocities are less than 3 × 103 m s−1. Obviously,
electrons and light scattering cannot be used as a similar probe.

Due to the relatively slow velocity of the He atom beam, the atoms probe only the
outer surface dynamics. Especially in contrast with STM and FIM, the QHAS technique
is nondestructive. It also provides information on the entire dispersion curves; in particular,
to very low energy regions. Typically, He beams have the following properties: high angular
resolution (around 0.3◦), high velocity resolution (�v/v ∼ 1%), a large dynamical range in
intensity (several orders of magnitude) and a spectral range between 0.2 and 50 meV. With all
these properties, the incident beam is highly monochromatic and well collimated and it will
be coherent in both time and space over about 10−11 s and 100 Å, respectively. The method
is sufficiently sensitive to probe very low surface coverages, down to ∼0.005. During the
interaction time on the surface, the beam probes the spatial distribution of the adsorbate via
the Doppler effect with large cross sections for the adparticles. This leads to a small energetic
broadening of the He atoms scattered elastically from the diffusing particles, hence the name
‘quasielastic atom scattering’. The corresponding peak in the time-of-flight spectrum converted
to an energy transfer scale is known as the quasielastic or Q peak. At present, QHAS is limited
to systems with fast diffusion with coefficients D > 10−6 cm2 s−1. As already mentioned,
FIM and STM are restricted to slow diffusion with D < 10−14 cm2 s−1.

In principle, adparticle diffusion is much slower than even the lowest frequency adsorbate
vibrational modes and so the two are well separated in time. In particular, one of the lowest
frequency adsorbate vibrational modes corresponds to the so-called frustrated translational
mode or T-mode, leading to the T-mode peak in the He beam time-of-flight spectrum. However,
for example, by increasing the surface temperature, the diffusion time may be reduced
exponentially, the two motions become coupled, diffusion will be assisted by the low frequency
vibrations which will contribute to the quasielastic peak. In the limit that the temperature is
higher than the diffusion barrier, no detectable trace of pure vibrations is expected and only
a broad quasielastic peak will be observed. A method for overcoming this mixing through
adequate manipulation of the initial conditions of the atomic beam [17], taking advantage of
the so-called inelastic focusing singularity from atom-surface scattering [18], has been recently
proposed.

The major experimental challenge facing this technique is to extract the inherent widths
of different line shapes (in particular, Q- and T-peaks) by deconvolution of the results from
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apparatus smearing. As also discussed below, the widths provide information on the relevant
physical quantities such as the diffusion coefficient, the interaction of the adparticle with the
surface (friction parameter), etc. Typically, the instrument response function of the apparatus
is assumed to be Gaussian while the physically interesting response function of the scattering
process is assumed to be Lorentzian. In fact, the corresponding line shapes are governed by the
so-called motional narrowing effect [19, 17], first observed in the stochastic nuclear magnetic
resonance lineshapes [20].

In summary, while the QHAS technique is nondestructive, its theoretical interpretation is
substantially more difficult than that of FIM or STM. In the next section, we review briefly the
theory underlying the QHAS technique, which then enables the interpretation of the scattering
in terms of generalized Langevin equations.

3. Theoretical interpretation of QHAS measurements

3.1. General considerations

In QHAS measurements, the observed spectrum is the differential reflection probability, that
is, the probability for an atom to be scattered into a certain solid angle � with an energy
interchange h̄ω. In this section we shall show how these measurements are related to the
detailed dynamics of the diffusion of the adparticle.

The QHAS signal is proportional to the dynamic structure factor, S(K, ω), defined as the
double Fourier transform of the G van Hove correlation function [21]

d2 R(K, ω)
d� dω

= N f 2 S(K, ω) = N f 2
∫ ∫

G(R, t)ei(K·R−ωt) dR dt (3.1)

where K is the wavevector transfer parallel to the surface,

K = k f sin θ f − ki sin θi (3.2)

and the energy interchange is

h̄ω = k2
f − k2

i (3.3)

where we have assumed that h̄2/2m = 1 and the standard notation has been followed: capital
letters for vectors parallel to the surface and small letters for vectors in 3D.

In equation (3.1), f is the atomic form factor depending on the interaction potential
between the projectile and the adparticles. The corresponding van Hove fluctuation density
autocorrelation function [16] is written as

G(|R − R′|, t) = �〈δρ(R′, 0)δρ(R, t)〉 (3.4)

with

ρ(R, t) = 1√
N

N∑
i=1

δ(R − Ri(t)). (3.5)

The density of adparticles is given by ρ = N/� where� is the surface area and the coverage
is defined by θ = N/Nmax, with Nmax being the maximum number of sites in the area �.
When the coverage on the surface is very low, adparticles can be treated as independent and
only the self-part of the van Hove correlation function, G, is important.

It is sometimes convenient to express the dynamic structure factor in terms of the
intermediate scattering function, I (K, t), which can be considered as the characteristic function
of the stochastic process R(t),

I (K, t) = 1

2π

∫
dt S(K, ω)eiωt = 〈e−iK·R(t)−R(0)〉 = 〈e−iK

∫ t
0 vl (t ′) dt ′ 〉, (3.6)



The dynamics of activated surface diffusion S4139

where vl is the velocity of the adparticle projected along the wavevector transfer K. A cumulant
expansion to second order yields the standard result [22]

I (K, t) ∼ e− K2

2

∫ t
0 dt ′ ∫ t

0 dt ′′〈vl (t ′)vl (t ′′)〉 = e−K2
∫ t

0 (t−t ′)ψ(t ′) dt ′
(3.7)

where ψ(t) ≡ 〈vl(t)vl(0)〉 is the velocity autocorrelation function of the adparticle. The first
approximation comes from the truncation of the cumulant series, and the second equality holds
if the velocity process vl(t) is stationary. For Gaussian stochastic processes, as is the case if
the thermal noise is Gaussian white noise and there is no interaction potential or it is quadratic,
equation (3.7) is exact. Higher cumulants have been derived by Rahman and co-workers [23].
Knowledge of ψ(t) is in general insufficient to completely determine I .

3.2. Free particle diffusion

To gain a feeling for the form of the dynamic structure factor we first consider it in the limit of
a free particle; that is, the adiabatic potential governing its motion is constant. The adparticle
does feel however a random Gaussian force F(t) with zero mean, induced by its interaction
with the surface. The force autocorrelation function is related to the friction function by the
fluctuation dissipation relation 〈F(t)F(τ )〉 = kBTγ (t−τ ). If furthermore the friction function
is Ohmic (γ (t) = 2γ δ(t), with δ(t) the Dirac ‘δ’ function), then the velocity autocorrelation
function ψ(t) decays exponentially with time [24], ψ(t) = 〈v2

l 〉e−t/τ , and the time constant
τ = 1/γ , with τ the (normalized) correlation time for the adparticle velocity.

The intermediate scattering function can then be expressed as [22]

I (K, t) = exp

[
−χ2

(
e−t/τ +

t

τ
− 1

)]
(3.8)

with

χ = τ

√
〈v2

l 〉|K| = D|K|√
〈v2

l 〉
≡ l̄|K| (3.9)

where l̄ is the mean free path and

D = τ 〈v2
l 〉 = τkBT/m (3.10)

is the diffusion coefficient. The shape of the dynamic structure factor is determined by the
magnitude of the friction. For weak damping (long correlation time τ ) the mean free path is
large, a short time expansion of the exponent in equation (3.8) is in order and the dynamic
structure factor is Gaussian:

S(K, ω) ∝ 1

|K|vl
exp[−ω2/(2|K|2v2

l )]. (3.11)

The corresponding full width at half maximum (FWHM)�S(K)with respect to the frequency
is linearly dependent on the wavevector transfer and vl , �S(K) ∝ vl |K|. The corresponding
van Hove function is also Gaussian

G(R, t) ∝ 1

(vl t)2
exp[−R2/(t2v2

l )]. (3.12)

This behaviour has been found in QHAS experiments of Xe adsorbates on a Pt(111)
surface [25], providing evidence for a fully mobile two-dimensional gas of Xe atoms.

In the opposite case, when the damping is strong, we have the long time approximation
(t 
 τ in equation (3.8)), I (K, t) ∝ e−K2 Dt and the spectrum has a Lorentzian line shape,

S(K, ω) ∝ |K|2 D

ω2 + |K|4 D2
. (3.13)

The FWHM with respect to the frequency ω is now �S(K) = DK2.



S4140 S Miret-Artés and E Pollak

We have thus seen that the shape of the dynamic structure factor can change from a
Gaussian shape when χ (cf equation (3.9)) is large to a motionally narrowed Lorentzian when
χ is small. The exact Fourier transform of equation (3.8) can be expressed in terms of the
complete and incomplete Gamma functions as [26, 17]

S(K, ω) = eχ
2
τ

π
χ−2χ2

Re χ−i2ωτ

[
�(χ2 + iωτ)− �

(
χ2 + i

ωτ

χ2

)]

= eχ
2

2π

∞∑
n=0

(−1)nχ2n

n!

2[(χ2 + n)/τ ]

ω2 + [(χ2 + n)/τ ]2
(3.14)

and one notes that the transition from a Gaussian form to a Lorentzian form is a function of
the parameter χ defined in equation (3.9).

3.3. QHAS for activated surface diffusion

In activated diffusion the time between jumps is long so that jumps between different sites may
be considered as instantaneous. This allows one to describe the jump dynamics in terms of
the master equation given in equation (2.1) with the identification that ŵ(k, t) = I (K, t). The
master equation underlies the analysis of Chudley and Elliot [27] for the dynamic structure
factor.

Appropriate Fourier transformation of the solution of the master equation will directly
give the dynamic structure factor. In other words, the information content of the dynamic
structure factor is precisely the hopping rates �i

j which define the master equation. In the
following section we shall describe the analytic Langevin theory which provides expressions
for the hopping rates �i

j which depend on a few physically meaningful parameters, such as the
barrier height of the adiabatic potential, the damping constant which describes the interaction
of the adparticle with the surface, the harmonic frequency of motion of the adparticle on the
surface and the surface temperature.

The experimental results are usually described in terms of a plot of the dependence of the
FWHM of the dynamic structure factor (�S(K)) as a function of the energy transfer frequency
ω at a fixed value of the momentum transfer K. From the master equation (2.1) (in which
we assumed that hopping may occur only in either the x or the y direction separately) and its
formal solution (equation (2.3)), one readily finds that

�S(K) = 2�
∞∑
j=0

[
P1

j (1 − cos( j lx Kx)) + P2
j (1 − cos( j ly Ky))

]
(3.15)

where lx and ly are the lattice lengths in the x and y directions respectively; � is the total
unidirectional rate out of the initial well (� = ∑∞

j=1(�
1
j +�2

j )) and Pi
j = �i

j/�, i = 1, 2. The
input then needed to obtain the FWHM function is the detailed jump rates �i

j .
The major complication in the interpretation of the QHAS measurements is the possibility

that inelastic processes interfere with the quasielastic peak. When this happens, one can no
longer consider that the FWHM of the quasielastic peak is determined solely by the hopping
rates. This type of phenomenon will be discussed further in section 5, below.

4. Analytic theory

4.1. The equations of motion

The centre of mass of a diffusing adatom or molecule (with mass m) moves in a three-
dimensional configuration space—x and y are the coordinates along the plane of the surface
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and z is the coordinate perpendicular to the surface. The particle thus moves in a mean field
of force whose potential Vs(x, y, z, r) is a function of the three coordinates and any additional
internal degrees of freedom of the molecule, described by the vector r. In addition, the
adsorbed particle may interact with the motion of the atoms on and below the surface. This
interaction might typically be in the form of optical or acoustic phonons of the surface. In the
former case one is considering a high frequency localized motion on the surface; in the latter
case one has a continuum of low frequency modes. As long as the temperature is not too high,
these interactions are well approximated in the form of a bilinear coupling of the adatom or
molecule with a bath of harmonic oscillators. Thus a central model describing diffusion is that
of a Hamiltonian whose form is

H = p̂2

2m
+ V (x, y, z) +

1

2

N∑
j=1

[
p2

x j
+ ω2

x j

(
x j − cx j

ω2
x j

x

)]

+
1

2

N∑
j=1

[
p2

y j
+ ω2

y j

(
y j − cy j

ω2
y j

y

)]
. (4.1)

The harmonic frequencies of the bath modes and the coupling coefficients are expressed in
terms of spectral densities [28] defined as

Ji (ω) = π

2

N∑
j=1

ci j

mω2
i j

[
δ(ω − ωi j )− δ(ω + ωi j )

]
, i = x, y. (4.2)

The associated friction functions are defined through the cos Fourier transforms of the spectral
densities:

γi (t) = 2

π

∫ ∞

0
dt

Ji(ω)

ω
cos (ωt) i = x, y. (4.3)

This nomenclature has its origin [29] in the fact that the classical equation of motions obeyed
by the Hamiltonian of equation (4.1) is the coupled set of generalized Langevin equations (for
brevity, we omit here the internal degrees of freedom of the molecule)

mz̈ +
∂V (x, y, z)

∂z
= 0 (4.4)

mẍ +
∂V (x, y, z)

∂x
+ m

∫ t

dt ′ γx(t − t ′)ẋ(t ′) = Fx(t) (4.5)

mÿ +
∂V (x, y, z)

∂y
+ m

∫ t

dt ′ γy(t − t ′)ẏ(t ′) = Fy(t) (4.6)

where Fx (t) and Fy(t) are independent Gaussian random forces, with zero mean, obeying
the fluctuation dissipation relations 〈Fi (t)Fi (t ′)〉 = mkBT γi(t − t ′), i = x, y where T is the
temperature of the bath and the brackets denote the appropriate Gaussian averaging.

In many cases classical mechanics suffices for a description of the diffusion process, since
the mass of the adatom or molecule is usually rather large. In some cases, depending on
the geometry of the surface, one may approximate the diffusion along the surface to be one
dimensional. This is typically the case when the diffusion occurs on a (100) or (110) surface.
A further simplification occurs when the frequency of motion in the vertical z direction is much
larger than the frequency of motion along the surface. One may then adiabatically eliminate the
vertical motion and one is left with a purely one-dimensional generalized Langevin equation
(GLE) model of surface diffusion:

mẍ +
dV (x)

dx
+ m

∫ t

dt ′ γ (t − t ′)ẋ(t ′) = F(t). (4.7)
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This one-dimensional model serves as the basis for understanding the effect of friction on the
diffusion process. We further assume that the potential V (x) is a periodic potential (although
on any given surface impurities will always limit the range over which the potential really is
periodic) with lattice length l0 and wells separated by barriers, whose height V ‡ relative to the
bottom of the wells is much larger than kBT . This last assumption is crucial. If the reduced
barrier height

(
V ‡/kBT

)
is less than ∼3, then the theory breaks down. If the reduced barrier

height is in the range ∼3–6 one must add finite barrier corrections to the theory [30–34].
Numerical solutions for the dynamics of the GLE abound, using various techniques, for a
recent review see [5]. Here, we are interested in the analytic theory, described below.

4.2. Turnover theory of activated diffusion

The Langevin theory of diffusion answers the following questions:

(a) What is the rate of escape of the adatom trapped in the well?
(b) How is this rate affected by the frictional and random force?
(c) Once the particle escapes from a well, how many lattice lengths will it traverse before it

is retrapped?
(d) Is there a difference between the dynamics of nearest neighbour hopping or hopping longer

distances?
(e) What are the mean squared path length and the diffusion coefficient and how do they

depend on the frictional and random force?

These questions have been addressed by various authors [35–38]; here we will provide a
summary of the main results.

In the Langevin picture, one first considers a kinetic equation for the (reduced—
ε ≡ E/kBT ) energy distribution function of adatoms in the j th well. This density is affected
by the rate of particles exiting the j th well and those arriving at the well from the j − 1th
and j + 1th wells. The number of particles per unit energy and per unit time hitting the right
(left) barrier of the j th well with positive (negative) velocity is denoted by f +

j ( f −
j ). The

reflection symmetry of the potential and the boundary conditions about the zeroth well implies
that f ±

j (ε) = f ∓
− j (ε).

Initially, one assumes that the adatom was localized in the zeroth well and was at local
equilibrium in that well. One then makes a steady state assumption for the population. This
then gives the central steady state equation for the fluxes [36, 37]:

f +
j (ε) =

∫ ∞

−∞
dε ′ P(ε|ε ′)[R(ε ′) f −

j (ε
′) + T (ε ′) f +

j−1(ε
′)] (4.8)

where T (ε) is the probability that the particle crosses the barrier as it approaches it at the
(reduced) energy ε and R(ε) is the probability of being reflected by the barrier. Of course
T (ε) + R(ε) = 1.

A central quantity in the theory is the conditional probability kernel P(ε|ε′) that the
particle changes its (reduced) energy from ε′ to ε as it traverses from one barrier to the next.
This in turn depends on another central quantity, which is the (reduced) average energy loss
δ as the adatom traverses from one barrier to the next. In the limit of weak friction, one may
readily show that the energy loss is given in terms of the friction function and the unperturbed
orbit of the particle at the barrier energy [36, 37]:

δ = m

2kBT

∫ ∞

−∞
dt
∫ ∞

−∞
dt ′ ẋ(t)γ (t − t ′)ẋ(t ′)

= m

4πkBT

∫ +∞

−∞
dω | ˜̇x(ω)|2γ̃ (ω). (4.9)
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The unperturbed orbit of the particle is the solution of the frictionless equation of motion
mẍ + dV (x)

dx = 0 at the barrier energy such that at time t = −∞ the adatom is initiated at the
first barrier and it reaches the adjacent barrier at t = ∞. In the second equality the tilde notation
stands for the Fourier transform of the corresponding value (x̃(ω) = ∫

dt x(t) exp(−iωt)).
In the typical case that the friction is Ohmic, that is γ (t) = 2γ δ(t)where here δ(t) denotes

the Dirac ‘δ’ function (which should not be confused with the reduced energy loss δ) one finds
that the energy loss is linearly proportional to a product of the damping factor and the action
of the adatom as it traverses from one barrier to the next:

δ = mγ

2kBT

∫ ∞

−∞
dt ẋ(t)2. (4.10)

This then also means that the energy loss is proportional to the product of the damping
constant and the reduced barrier height. Since typically many experiments are carried out
under conditions of large reduced barrier heights, the reduced energy loss can be unity or even
larger, even though the damping constant is rather small [39].

The central quantity of interest is the number of particles per unit time which are trapped in
the j th well (� j ). From here, we deleted the superscript as we are dealing with one-dimensional
diffusion. It is this distribution which provides the answers to all the questions posed above.
It is obtained by considering the difference between the incoming and outgoing fluxes at the
j th well:

� j =
∫ ∞

−∞
dε T (ε)[ f +

j−1(ε) + f −
j+1(ε)− f −

j (ε)− f +
j (ε)] (4.11)

obviating the necessity of obtaining the steady state fluxes. The probability of being trapped at
the j th well ( j �= 0) is Pj = � j

�
and the rate of escape from the zeroth well is � = −�0. The

mean squared path length is then by definition 〈l2〉 = l2
0

∑∞
j=−∞ j 2 Pj where l0 is the lattice

length. For one-dimensional diffusion, the diffusion coefficient is the product of the rate of
escape and half the mean squared path length:

D = 1
2�〈l2〉 = 1

2 l2
0

∞∑
j=−∞

j 2� j . (4.12)

In the moderate to strong friction limit where the rate limiting step is spatial diffusion across the
barrier, the rate of escape from the well is given by the Kramers–Grote–Hynes formula [40, 41]
(the particle can escape from either side so that the rate is double the standard escape rate):

�sd = ω0

π

λ‡

ω‡
exp

(
− V ‡

kBT

)
(4.13)

where ω0 is the harmonic frequency at the well, V ‡ is the barrier height, ω‡ is the parabolic
barrier frequency, λ‡ is the positive root of the equation s2 + sγ̂ (s) = ω‡2

where γ̂ (s) is the
Laplace transform of the time dependent friction γ (t). In this spatial diffusion limit, one must
only consider nearest neighbour hopping so that 〈l2〉 = l2

0 and

Dsd = 1
2 l2

0�sd. (4.14)

This result has been used extensively in the past. It ignores the possibility of multiple hops as
well as the limitation set by the rate of energy diffusion when the friction is sufficiently weak.

To solve the integral equation one needs to specify the conditional probability kernel
P(ε|ε′) as well as the energy dependent transmission and reflection coefficients. One may use
different models for the conditional probability kernel, which would correspond to different
dynamics. Here, we provide results specifically for the Langevin equation dynamics and
the classical limit. The quantum form of the kernel has been derived and given in detail
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in [42]. The classical kernel is Gaussian and its Fourier transform has the simple form
P̃(i s) = exp[δ(s2 + s)]. In the classical limit, the transmission and reflection probabilities are
step functions—T (ε) = θ(ε), R(ε) = θ(−ε) where θ(x) is the unit step function.

The integral equation may now be solved by taking advantage of the periodicity of the
problem and using Fourier transforms. The details are given in [43, 42, 36, 37]; here we give
the results. For the partial rates one finds

� j = −�sd
1

π

∫ 2π

0
dk sin2

(
k

2

)
cos( jk) exp

[
1

π

∫ ∞

0
dτ

ln
[G(τ − i

2 , k
)]

τ 2 + 1
4

]
(4.15)

where the function G(i s, k) is defined as

G(i s, k) ≡ 1 − P̃2(i s)

1 + P̃2(i s)− 2P̃(i s) cos(k)
. (4.16)

The expression for the diffusion coefficient simplifies considerably because of the infinite
summation over the partial rates (cf equations (4.12) and (4.15)):

D = Dsd exp

[
1

π

∫ ∞

0
dτ

1

τ 2 + 1
4

ln

(
1 + P̃

(
τ − i

2

)
1 − P̃

(
τ − i

2

)
)]

. (4.17)

These results provide uniform expressions for the partial rates, the decay rate and the diffusion
coefficient in terms of the reduced energy loss δ and the rate expression in the spatial diffusion
limit. They are valid for all values of the friction; the only real limitation is that the reduced
barrier height is large enough, as already discussed above.

4.3. The exponential hopping limit

Although explicit expressions have been presented in the previous section for the hopping
distributions, their form is rather complicated and it would be very useful to approximate them
by some simpler result. Typically, the central source of friction of an adatom is phonon friction,
which is Ohmic in nature [39] with a rather weak friction coefficient. But especially in STM
and FIM experiments, which occur on timescales of seconds, the reduced barrier heights are
typically greater than 10 so that the reduced energy loss is greater than unity. In this limit of
weak damping but moderate to large energy loss, the expressions for the hopping distribution
simplify considerably. In the classical limit they are exponential in the energy loss δ [44, 45]

Pj+1 = P−( j+1)  j−3/2

√
πδ

e− jδ/4, j � 1. (4.18)

If the reduced energy loss is much larger than unity, only nearest neighbour hopping is
important; the diffusion coefficient reduces then to the spatial diffusion limited diffusion
coefficient given in equation (4.14). However, in the experimentally relevant cases where
the reduced energy loss is of the order of unity, multiple hopping cannot be ignored, even
though the hopping distribution is exponential.

The exponential hopping limit has a relatively simple physical interpretation. In this limit,
the energy loss is sufficiently large so that the distribution of escaping particles may be assumed
to be thermal. Assuming that the energy transfer probability kernel is Gaussian implies that
the fraction of particles that start at a barrier top and make it to the adjacent barrier top is given
by (the barrier energy is zero)

F2,1 ∼
∫ ∞

0
dε
∫ ∞

0
dε ′ P(ε|ε ′) e−ε′ = erfc

(√
δ

2

)
∼ 2√

πδ
e−δ/4, δ 
 1. (4.19)

This result is then readily generalized to longer hops.
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In this exponential hopping limit, the activation energy for a hop length of ( j + 1)l0 is thus
larger by kBT δ/4 than the activation energy for a hop whose length is j l0. This result is in good
agreement with experimental observation for the diffusion of Pt on the Pt(110)-(1×2)missing
row reconstructed surface [11]. For this system, the reduced energy loss varies from 5.8 to 7.4
over the temperature range studied experimentally (300–380 K). The absolute magnitude of
the energy loss is estimated to be 0.19 eV, leading to an added activation energy of ∼0.05eV
for double jumps as compared to single jumps [46]. A somewhat different interpretation of
the added activation energy has been suggested in [47].

4.4. Experimental application

The experimentally measurable quantity in STM or FIM experiments is the time dependent
population of sites on the surface. At the initial time, one notes the position of an adatom
and then one probes its position at later times. This experiment is then repeated many times,
giving the time dependent probability distribution of the diffusing adatom. At long times the
evolution is universal, controlled by the diffusion equation, and the shape of the distribution
is Gaussian. At the early stage however, the shape of the distribution depends on the particle
jump length between successive trappings. Having a solution for the hopping rates, one may
also readily derive an expression for the time dependent probability distribution.

The formal solution of the master equation (2.1) for the time dependent population
distribution was presented in equaton (2.3). All that was needed to complete the solution
were explicit expressions for the hopping rates, and these were presented in the previous
subsection. Specifically, from equation (4.15) one now has that

�̂(k) = 2 sin2

(
k

2

)
�sd exp


 1

π

∫ ∞

0
ds

ln
[

1+exp(−δ(s2+ 1
4 ))

1−exp(−δ(s2+ 1
4 ))

]
s2 + 1

4


 (4.20)

thus providing an explicit solution for the time evolution of the probability distribution wl,m .
In contrast to the parameter fitting employed by the experimentalists, in which each of the

separate rates � j was considered as an independent parameter, the Langevin theory provides
a complete description of the probability distribution in terms of two parameters, the ‘spatial
diffusion rate’ parameter�sd and the energy loss parameter δ. As an example, which is readily
applicable, we consider a periodic potential which has the form V (x) = V ‡

2 (1−cos( 2π x
l0
))with

Ohmic friction. The reduced energy loss parameter is then δ = 2V ‡γ

kB Tω0
, where the frequency

at the bottom of the well ω0 = π
√

V ‡

ml2
0

with m being the mass of the adparticle [34]. From

the experimental data one has obtained the energy loss parameter δ and the barrier height V ‡.
One can thus immediately obtain the value of the friction parameter γ . Moreover, these three
parameters can now predict the spatial diffusion rate �sd, leaving us with a one-parameter fit
of the data only. This scheme may be a bit too restrictive, since it implies that the barrier and
well frequency of the periodic potential are the same. One can construct a periodic potential
allowing for different frequencies, and then one has a two-parameter fit of the data. The truly
important result to come out of the experimental measurement is the magnitude of the friction
coefficient, which describes the interaction of the adparticle with the surface.

This theory has been successful in interpreting and fitting experimentally measured
data. As already mentioned above, the diffusion of Pt on the Pt(110)-(1 × 2) missing row
reconstructed surface measured by STM [11] was analysed in [46]. The diffusion of W and
Pt on the W(211) surface, measured by FIM [48] was analysed in [49]. The diffusion of Na
atoms on a Cu(001) surface, measured by QHAS [50] was analysed in [51, 52, 34].
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5. The future

5.1. Quantum effects

Quantum effects can manifest themselves in a variety of ways. Tunnelling can lead to
an enhancement of the diffusion constant, above barrier reflection to its reduction; at low
temperatures even if the spectral density is Ohmic the quantization of the levels of the bath leads
to memory effects in the random force autocorrelation function. A semiclassical generalization
of the classical Kramers turnover theory discussed in the previous section has been derived
in [37]. Perhaps the most interesting result was the discovery that the quantum diffusion
coefficient can be lower than the classical. When considered as a function of the energy
loss parameter δ, the quantum mean squared path length is always lower than the classical.
The quantum rate of escape is always greater than the classical. The diffusion coefficient
is a product of the two. When δ < 1, the reduction of the mean squared path length is
greater than the rate enhancement and the quantum diffusion coefficient is smaller than the
classical. While the classical diffusion coefficient diverges as 1/δ in the underdamped limit,
the quantum diffusion coefficient diverges as δ

1
α
−1 with α = 2π

h̄βλ‡ > 1. When δ > 1 the
opposite occurs and the quantum diffusion coefficient is greater than the classical. This
novel quantum effect, which implies for example that in the relevant parameter range the
diffusion of deuterium atoms can be faster than that of hydrogen atoms, has yet to be measured
experimentally.

The quantum exponential hopping limit has been analysed in [45]. A central result is
that

Pj�2

P1
 (h̄βλ‡/4) cot(h̄βλ‡/4)

Pcl
j�2

Pcl
1

(5.1)

where the cl superscript denotes the classical hopping probabilities. This implies that in
the exponential hopping limit quantum tunnelling and above barrier reflection reduce all
the multiple hopping probabilities relative to the classical by the same amount. Tunnelling
affects only the first and last of the j � 2 jumps. All intermediate jumps are described by
transitions at energies close to the top of the barrier, which are only weakly influenced by
tunnelling.

Experimentally, quantum effects have shown up whenever the diffusing atom is hydrogen
or deuterium. Gomer and co-workers, using the field emission method, reported quantum
tunnelling effects for the diffusion of H atoms on a W surface [53, 54]. They found that
the diffusion coefficient becomes temperature independent at very low temperatures. More
recent results were reported by Cao et al [55], who used laser induced desorption and optical
diffraction techniques to study the diffusion of H and D atoms on a Ni(111) surface. They
found a weaker tunnelling effect; however, the curvature of an Arrhenius plot of the diffusion
coefficient is very obvious and the D diffusion coefficient was found to be substantially smaller
than the H atom diffusion coefficient. To date though, these experimental findings have not been
analysed using Langevin dynamics. Primarily the reason for this is that these experiments shed
light only on the diffusion coefficient, but nothing is known about the hopping distribution. In
addition the results of [55] disagree with those of Lin and Gomer [56]. Given the experimental
uncertainties, and the lack of accurate knowledge of the energetics, it is not easy to provide
a conclusive theoretical analysis. The diffusion of H and D on surfaces remains an area of
active study; the experimentalists should analyse their results using the Langevin based theory
instead of ad hoc expressions as in [55].
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5.2. Vibrational assisted diffusion

In the STM and FIM experiments, one is not sensitive to the vibrational motion of the adatom
on the surface. This is not the case in QHAS, where vibrational motion may interfere with the
quasielastic peak, making it much more difficult to interpret the experimental measurement.
As far as we know, the first attempt to consider the two kinds of motion on an equal footing
was due to Chen and Ying [57]. A good way to illustrate and understand better some features
of the vibration–diffusion coupling is to model the velocity autocorrelation function as [17]

ψ(t) = 〈v2
l 〉 cos(ωTt + δ)e−t/τT (5.2)

whereωT is the frequency of motion of the adparticle parallel to the surface (the T-mode), τT is
an overall correlation time and δ is a phase parameter which improves the fit of equation (5.2)
to the actual velocity autocorrelation function. At high temperatures, diffusion is predominant
and τT is approximately the diffusion coefficient divided by the scaled temperature kBT . At
low temperature, jumps of the adparticle are rare events and one remains almost exclusively
with the vibrational dynamics. In this limit the correlation time is inversely proportional to the
friction coefficient τ−1

T ∼ γ .
With this phenomenological form for the velocity autocorrelation function one may carry

out the time integration in the (Gaussian) expression for the intermediate scattering function
(equation (3.7)). The explicit (somewhat lengthy) expression may be found in [17]. In contrast
to simplified expressions used previously in the literature [50], the total line shape is nota simple
sum of two contributions, one from the quasielastic peak and the other from the vibration. The
two interfere with each other, displaying the motional narrowing effect, and in general cannot
be separated.

Even with this simplified model, one already finds that deconvolution of the QHAS
measurement is not trivial. One can improve it by doing away with the Gaussian approximation
for the dynamic structure factor [17]. However, there is no guarantee that the functional form
of equation (5.2) is an accurate representation of the ‘true’ velocity autocorrelation function.
A ‘good’ theory which correctly describes vibrational assisted diffusion remains a challenge
for the future. We also note that little is known about the effects of internal motion of the
adparticle on the diffusion dynamics.

5.3. Multidimensional theory

The analytic theory presented in the previous section is a one-dimensional one; the underlying
assumption is that the geometry of the surface is such that the adparticle is confined to diffuse
along unidirectional channels. This is not the case when considering for example a (111)
geometry of the surface. One must then consider at least the coupled motion of the adparticle
in the plane, in addition to the dissipation. In the spatial diffusion limit, this does not pose
any severe problem; the multidimensional generalization of the spatial diffusion escape rate
has been considered by many authors [58, 59] and is well understood, even in the presence of
strongly anisotropic friction [60]. In this limit, the particle is limited to hopping over single
sites before being retrapped.

Difficulties occur when considering the underdamped to moderate damping regime of
the diffusion. In the limit that the friction coefficient goes to zero, the diffusion constant no
longer diverges; it goes to a constant [38]. The energy loss parameter now depends on the
nonlinear dynamics of the motion along the plane of the surface [34]. This dynamics may be
quasiperiodic, chaotic or mixed and influences the magnitude of the energy loss. If motion in
the well is ergodic and the mixing occurs on a timescale that is short compared to the time
it takes the adparticle to escape from the well, then one finds that the energy loss parameter
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is proportional to
(

V ‡

kB t

)2
[61–64]. The strong coupling causes the rate to increase relative to

the one-dimensional case, since the mixing enhances the energy transfer from the surface to
the reactive mode. At the same time it reduces the mean hopping length, since it disallows
multiple hops. Similar observations were found if one replaces the Langevin dynamics with a
strong collision model [65].

If the two degrees of freedom are weakly coupled then the energy loss parameter behaves
as in one dimension; it is linearly proportional to the reduced barrier height. This implies that
multiple hops will in general be less important when the diffusion is truly multidimensional.
Two-dimensional diffusion on a periodic interaction potential has been recently studied for
Na atom diffusion on the Cu(001) surface [51, 52, 34]. The coupling between the two surface
degrees of freedom was found to lead to an increase in the escape rate from the well and thus
also an increase in the diffusion coefficient. Although anomalous diffusion may occur in the
absence of friction, numerical observations lead to the conclusion that coupling to the phonon
bath destroys the anomaly and the diffusion is normal [51, 66, 67].

The quantum dynamics of multidimensional diffusion has not been studied. We do not
understand how the quantization of levels, multidimensional tunnelling and resonances affect
the diffusion rate. The properties could be studied numerically by using reduced equations of
motion, especially when the coupling is weak and Redfield type equations are valid. However,
to date, to the best of our knowledge, this has not been done.

5.4. Manipulations with external fields

Activated diffusion in the presence of an external field is an important area of research.
If the amplitude of the driving force is larger than the barrier height, then one loses the
concept of activated diffusion. We are more interested in the effect of a field which does
not alter the qualitative structure of the potential affecting the diffusion dynamics. Numerical
investigations [68–70] led to the conclusion that in this limit the phenomenon of stochastic
resonance is not observable in the diffusion coefficient. Varying the noise strength in the
presence of an external field does not lead to a maximum in the diffusion coefficient [71].
Further investigations of stochastic resonance in multidimensional systems led to similar
conclusions [72].

Two-dimensional diffusion in the presence of symmetric and asymmetric external ac
electric fields has been studied in [73]. Diffusion on an asymmetric ratchet like two-
dimensional potential in the presence of external fields was studied in [74]. Current reversals
were found and could be controlled through the properties of the external field.

An external dc field can influence the hopping dynamics. As already mentioned in
section 2, this is especially important when considering STM measurements. The field can
change the mean potential [15],as well as the interaction of the adparticle with its surroundings.
Theoretical studies may be found in [75–77]. It would seem that the field strength applied by
an STM tip is strong enough to modify the hopping distribution.

Instead of considering the STM field as a perturbation on the diffusion, various researchers
have suggested that one may be able to use the field to measure the diffusion of adparticles.
Sumetskii and Kornyshev [78] suggested that one should analyse the transmitted current and
associated noise and their dependence on the tip sample distance, temperature and other
properties. Prostnev et al [79] suggested to use the scanning speed to extract both the diffusion
coefficient and the mean jump length.

Activated diffusion has also been modelled in the presence of aperidoic [80] and stochastic
potentials [81, 66, 67]. The dynamics becomes more complicated when considering motion
in the presence of a space dependent friction (the friction felt by the adparticle at a barrier
could be quite different from the friction at the well) and external forces which may also be
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stochastic [82]. Most recently, Lacasta et al [83], showed that for diffusion in two dimensions
external forces can lead to sorting of adparticles.

All the studies mentioned above were based on classical mechanics. Quantum activated
diffusion in the presence of an external field remains a topic for future studies.
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